of Learning Grounding from Visual-Textual Web data

Jack Hessel
Cornell University

A collection of tasks requiring connection between visual and textual content.

A collection of tasks requiring connection between visual and textual content.

Alt-text Generation

Chrome's new AI feature solves one of the web's eternal problems

To help blind and low-vision users, Google is using machine learning to generate descriptions for millions of images.

[Wu et al. 2017; Sharma et al. 2019]

A collection of tasks requiring connection between visual and textual content.

Alt-text Generation

Chrome's new AI feature solves one of the web's eternal problems

To help blind and low-vision users, Google is using machine learning to generate descriptions for millions of images.

[Wu et al. 2017; Sharma et al. 2019]

Human-Robot Interaction

"Here are the yellow ones"

[Matuszek et al. 2012]

A collection of tasks requiring connection between visual and textual content.

Alt-text Generation

Chrome's new AI feature solves one of the web's eternal problems

To help blind and low-vision users, Google is using machine learning to generate descriptions for millions of images.

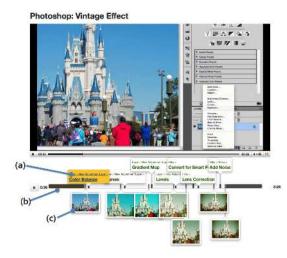
[Wu et al. 2017; Sharma et al. 2019]

Human-Robot Interaction

"Here are the yellow ones"

[Matuszek et al. 2012]

Web Video Parsing



[Kim et al. 2014]

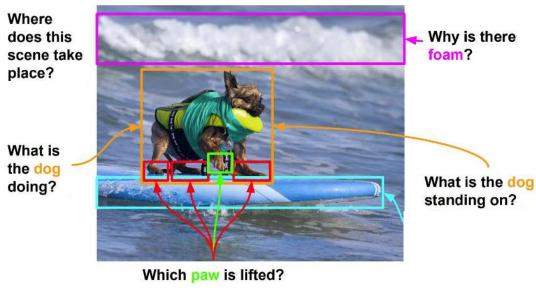
Why study visual-textual grounding?

Cross-modal reasoning is easy for humans, hard for computers

[Zhu et al. 2016; Photo by Nathan Rupert]

Why study visual-textual grounding?

Cross-modal reasoning is easy for humans, hard for computers



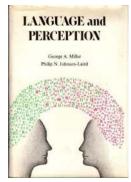
[Zhu et al. 2016; Photo by Nathan Rupert]

Why study visual-textual grounding?

Cross-modal reasoning is important beyond Al

Cognitive psychology work since at least the 1970s.

[Miller and Johnson-Laird 1976]



"Symbol Grounding Problem"

[Harnad 1990]

"How are those symbols (e.g., the words in our heads) connected to the things they refer to?"

Noisy web data is unreasonably effective

Noisy web data is unreasonably effective

Web data is

"the best ally we have"

--- Halevy, Norvig, and Pereira, 2009

Noisy web data is unreasonably effective

Why study multimodal <u>web data</u>?

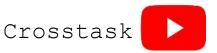
Noisy web data is unreasonably effective

Unimodal Tasks

IM GENET

[Deng et al. 2009; Wang et al. 2019] Image+Text Tasks

[Goyal et al. 2017; Suhr et al. 2018; Hudson and Manning, 2019; Young et al. 2014] Video+Text Tasks



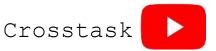
[Zhukov et al. 2019; Zhou et al. 2018]

Noisy web data is unreasonably effective

Unimodal Tasks

[Deng et al. 2009; Wang et al. 2019] Image+Text Tasks

[Goyal et al. 2017; Suhr et al. 2018; Hudson and Manning, 2019; Young et al. 2014] Video+Text Tasks



[Zhukov et al. 2019; Zhou et al. 2018]

3.5B Tagged Instagram Images 34B Web Tokens

3M Webly Supervised Image-Caption Pairs

Conceptual Captions

[Sharma et al. 2018]

100M Web Video Clips + ASR

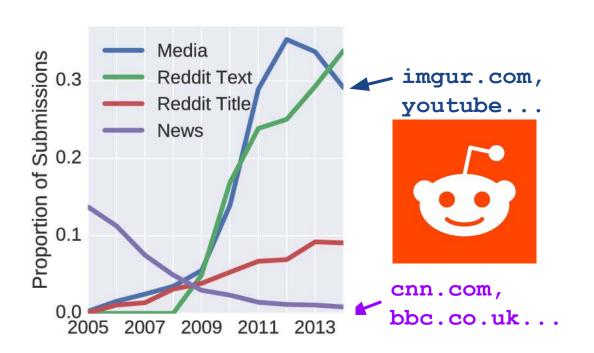
[Miech et al. 2019]

[Mahajan et al. 2018; Raffel et al. 2019]

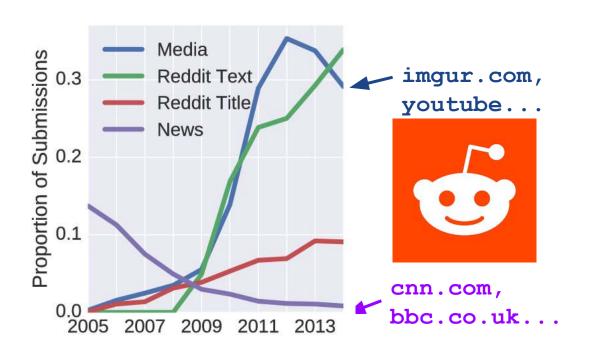
Why study multimodal <u>web data</u>?

Important for understanding web communication

Important for understanding web communication



Important for understanding web communication



Semioticians have long argued multimodality is a fundamental part of communication

"The power of visual communication is multiplied when it is co-deployed with language in multimodal texts." [Lemke 2002]

build better grounding algorithms

understand web communication

need for cross-modal reasoning, real-world knowledge, etc.

requires

build better grounding algorithms

understand web communication

need for cross-modal reasoning, real-world knowledge, etc.

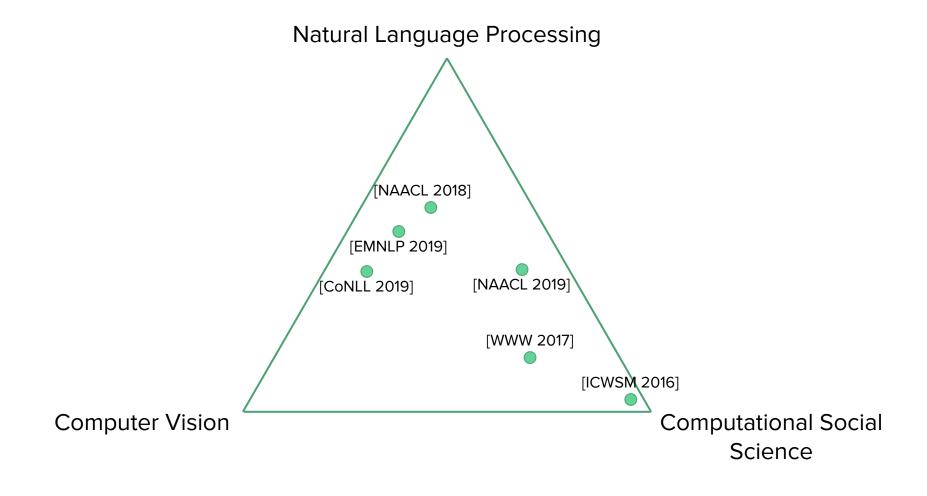
requires

build better grounding algorithms

understand web communication

design
more effective
unsupervised
training
objectives
for web data

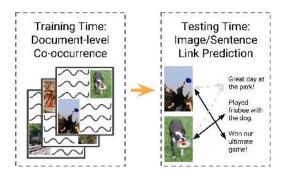
requires



We can <u>do cool things</u> with multimodal webdata,

but web texts are <u>not literal image descriptions</u>

(even though most algorithms treat them that way)

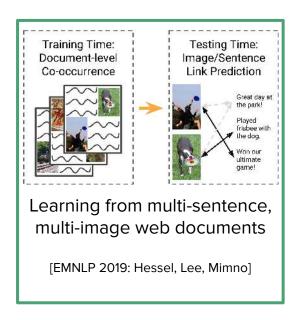


Learning from multi-sentence, multi-image web documents

[EMNLP 2019: Hessel, Lee, Mimno]

Learning from unlabelled web videos + ASR

[CoNLL 2019: Hessel, Pang, Zhu, Soricut; In Sub: Hessel, Zhu, Pang, Soricut]



Target: Put the dish on a plate and serve

Learning from unlabelled web videos + ASR

[CoNLL 2019: Hessel, Pang, Zhu, Soricut; In Sub: Hessel, Zhu, Pang, Soricut]

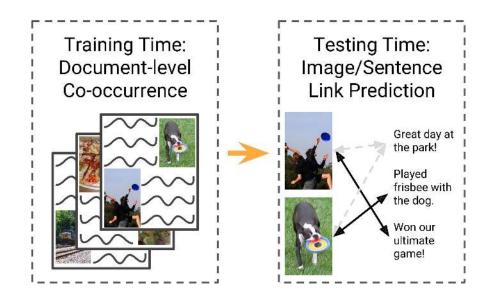
Multi-image, Multi-sentence documents?

Image captioning case:
one image, one sentence
explicit link by annotation

Our case:

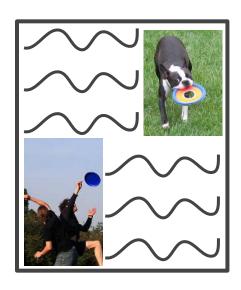
multiple images, multiple sentences no explicit links

The Task: Unsupervised Link Prediction



What's hard about this link prediction task?

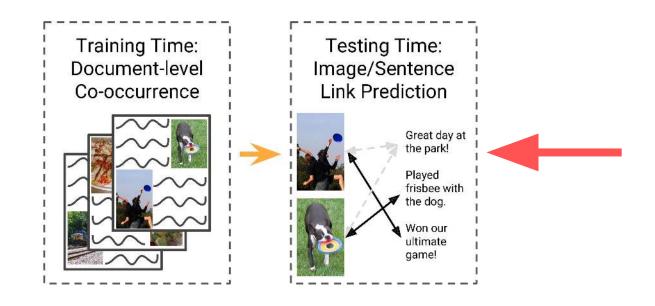
- No explicit labels!
- Sentences may have no image
- Images may have no sentence
- Sentences may have multiple images
- Images may have multiple sentences



Multi-image/multi-sentence pretraining framework:

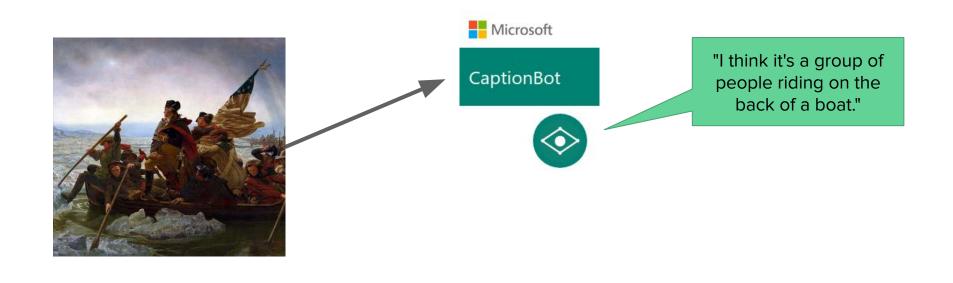
Web pages, product listings, books (current and historical), web comments on images, news articles...

The Task: Unsupervised Link Prediction

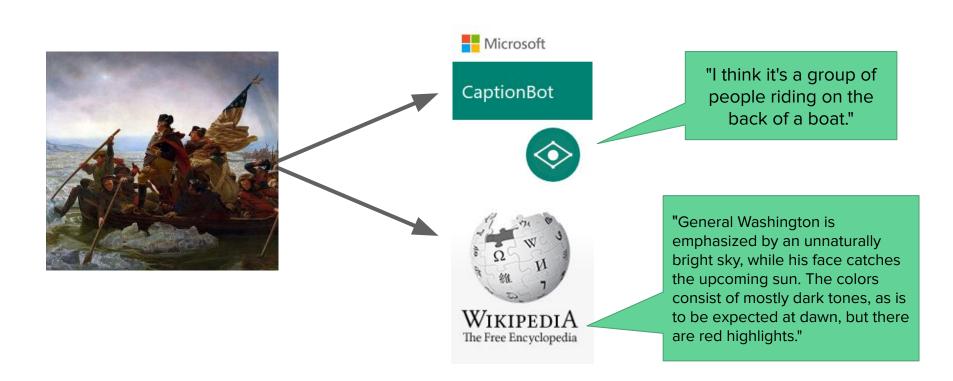


Why you might care about same document retrieval:

Why you might care about same document retrieval:

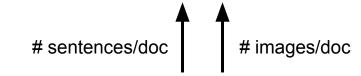


Why you might care about same document retrieval:

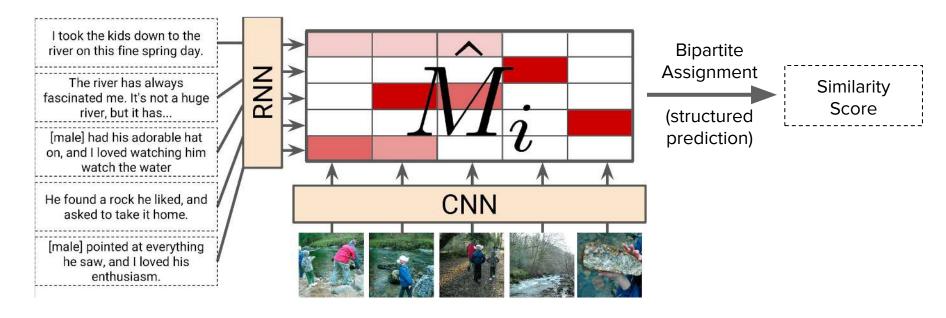


Stats for Web Datasets

	train/val/test	n_i/m_i (median)	_	density
DIY	7K/1K/1K	15/16	154K	8%
RQA	7K/1K/1K	6/8	88K	17%
WIKI	14K/1K/1K	86/5	92K	N/A



Model

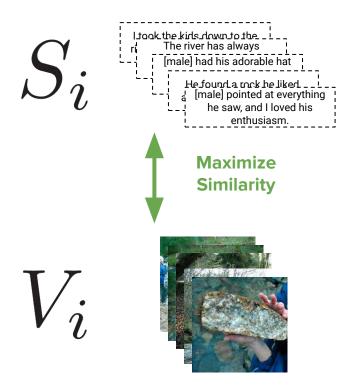


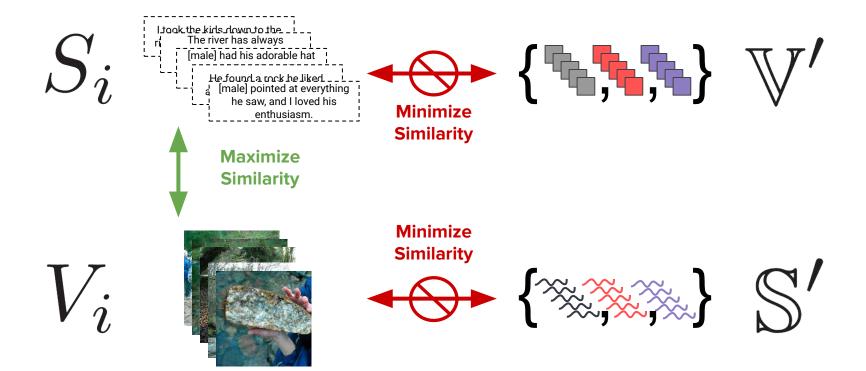
The river has always fascinated me. It's not a huge river, but it has...

I took the kids down to the river on this fine spring day.

He found a rock he liked, and asked to take it home.

[male] had his adorable hat on, and I loved watching him watch the water [male] pointed at everything he saw, and I loved his enthusiasm.





Quantitative Results

we have labels that are <u>only used at test-time</u> for evaluation for these datasets

(Higher = better)			DIY AUC p@1/p@5
	Random Obj Detect NoStruct	49.4 17.8/16.7 58.7 25.1/21.5 60.5 33.8/27.0	49.8 6.3/6.8 53.4 17.9/11.8 57.0 13.3/11.8
	Ours	69.3 47.3/37.3	61.8 22.5/17.2

WIKI Prediction on 100-sentence Mauritius Article

This archipelago was formed in a series of undersea volcanic eruptions 8-10 million years ago... (93.9)

The island is well known for its natural beauty. (92.1)

First sighted by Europeans around 1600 on Mauritius, the dodo became extinct less than eighty years later. (84.5)

... a significant migrant population of Bhumihar Brahmins in Mauritius who have made a mark for themselves in different fields. (79.8)

Mauritian Créole, which is spoken by 90 per cent of the population, is considered to be the native tongue... (68.3)

For the dodo, the an object detection baseline's selected sentence began with: "(Mauritian Creole people usually known as 'Creoles')"

WIKI Prediction on 100-sentence Mauritius Article

This archipelago was formed in a series of undersea volcanic eruptions 8-10 million years ago... (93.9)

The island is well known for its natural beauty. (92.1)

First sighted by Europeans around 1600 on Mauritius, the dodo became extinct less than eighty years later. (84.5)

... a significant migrant population of Bhumihar Brahmins in Mauritius who have made a mark for themselves in different fields.

Mauritian Créole, which is spoken by 90 per cent of the population, is considered to be the native tongue...
(68.3)

For the dodo, the an object detection baseline's selected sentence began with: "(Mauritian Creole people usually known as 'Creoles')"

WIKI Prediction on 100-sentence Mauritius Article

This archipelago was formed in a series of undersea volcanic eruptions 8-10 million years ago...
(93.9)

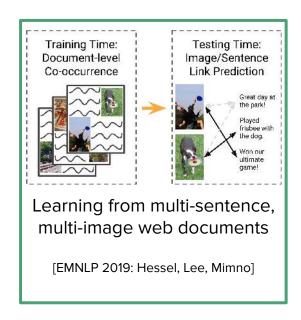
The island is well known for its natural beauty. (92.1)

First sighted by Europeans around 1600 on Mauritius, the dodo became extinct less than eighty years later. (84.5)

... a significant migrant population of Bhumihar Brahmins in Mauritius who have made a mark for themselves in different fields. (79.8)

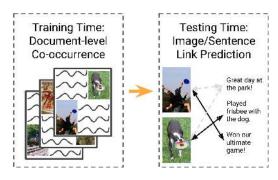
Mauritian Créole, which is spoken by 90 per cent of the population, is considered to be the native tongue... (68.3)

For the dodo, the an object detection baseline's selected sentence began with: "(Mauritian Creole people usually known as 'Creoles')"



Learning from unlabelled web videos + ASR

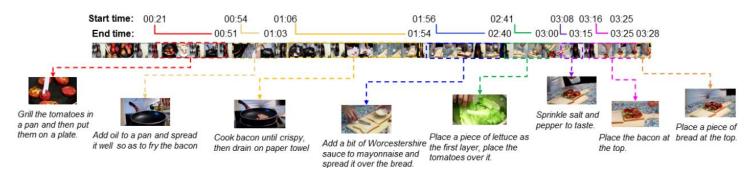
[CoNLL 2019: Hessel, Pang, Zhu, Soricut; In Sub: Hessel, Zhu, Pang, Soricut]



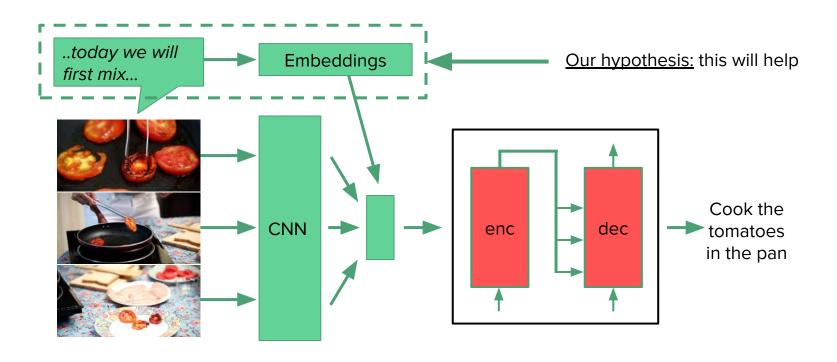
Learning from multi-sentence, multi-image web documents

[EMNLP 2019: Hessel, Lee, Mimno]

Noisy ASR for Video Captioning

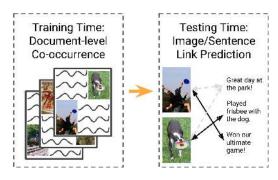


Noisy ASR for Video Captioning



Noisy ASR for Video Captioning

	BLEU-4	METEOR	ROUGE-L	CIDEr
Prev. SoTA (video only)	4.31	11.91	29.47	0.53
Noisy ASR (text only)	<u>8.55</u>	16.93	35.54	1.06
Video+ASR (multimodal)	9.01	17.77	36.65	1.12



Learning from multi-sentence, multi-image web documents

[EMNLP 2019: Hessel, Lee, Mimno]

Many datasets/algorithms focus only on literal objects/actions...

[Lin et al 2014]

The man at bat readies to swing at the pitch while the umpire looks on.

"Do not describe what a person might say."
--- MSCOCO caption annotation guideline for mechanical turkers

Image-text relationships on the web

Q: "How does an illustration relate to the text with which it is associated, or, what are the functions of illustration?"

Image-text relationships on the web

Q: "How does an illustration relate to the text with which it is associated, or, what are the functions of illustration?"

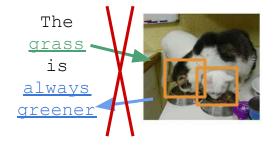
A Functions expressing little relation to the text	B Functions expressing close relation to the text	C Functions that go beyond the text	
A1 Decorate A1.1 Change pace A1.2 Match style A2 Elicit emotion A2.1 Alienate A2.2 Express poetically A3 Control A3.1 Engage A3.2 Motivate	B1 Reiterate B1.1 Concretize B1.1.1 Sample B1.1.1.1 Author/Source B1.2 Humanize B1.3 Common referent B1.4 Describe B1.5 Graph B1.6 Exemplify B1.7 Translate B2 Organize B2.1 Isolate B2.2 Contain B2.3 Locate B2.4 Induce perspective B3 Relate B3.1 Compare B3.2 Contrast B3.3 Parallel B4 Condense B4.1 Concentrate B4.2 Compact B5 Explain B5.1 Define B5.2 Complement	C1 Interpret C1.1 Emphasize C1.2 Document C2 Develop C2.1 Compare C2.2 Contrast C3 Transform C3.1 Alternate progress C3.2 Model C3.2.1 Model cognitive process C3.2.2 Model physical process C3.3 Inspire	Table II Taxonomy of function of images to the tex

A: It depends!

[Marsh and Domas White, 2003]

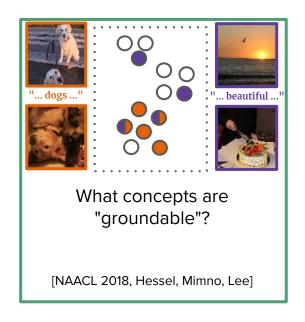
What concepts are "groundable"?

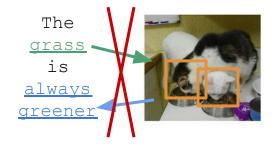
[NAACL 2018, Hessel, Mimno, Lee]



Does my model learn cross-modal interactions?

[In Sub to EMNLP 2020: Hessel, Lee; WWW 2017, Hessel, Lee, Mimno]





Does my model learn cross-modal interactions?

[In Sub to EMNLP 2020: Hessel, Lee; WWW 2017, Hessel, Lee, Mimno]

"Performance advantages of [multi-modal approaches] over language-only models have been clearly established when models are required to learn concrete noun concepts."

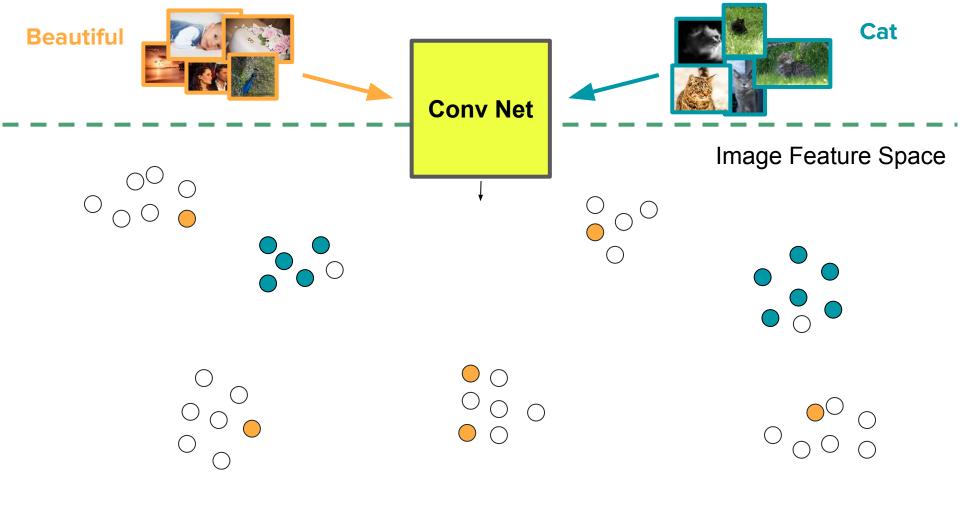
[Hill and Korhonen 2014]

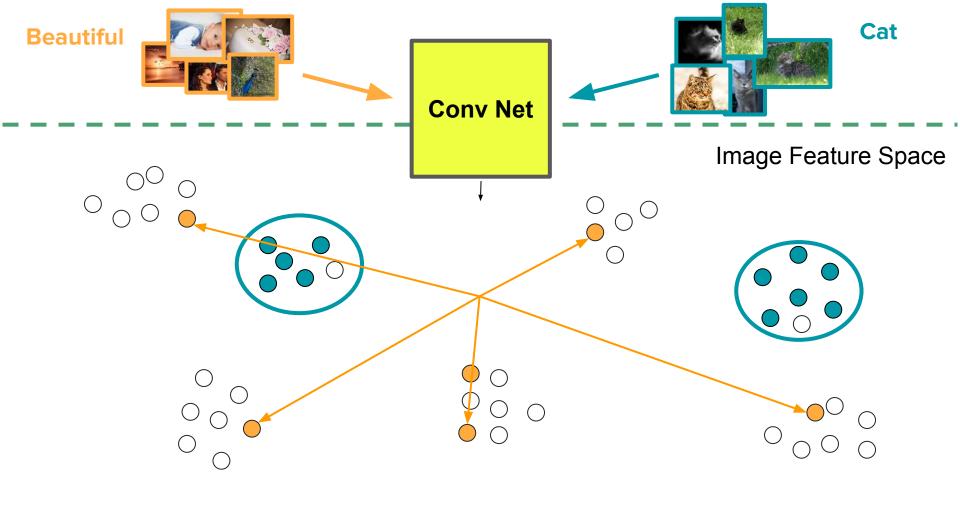
The cat is in the grass.

This cat is enjoying the sun.

This is a beautiful baby.

The sunset is beautiful.



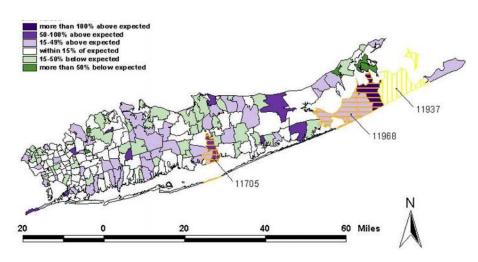


Connection to Geospatial Statistics

Local Indicators of Spatial Association—LISA

The capabilities for visualization, rapid data retrieval, and manipulation i graphic information systems (GIS) have created the need for new techniq exploratory data analysis that focus on the "spatial" aspects of the data identification of local natterns of spatial association is an important concept.

[Anselin 1995]

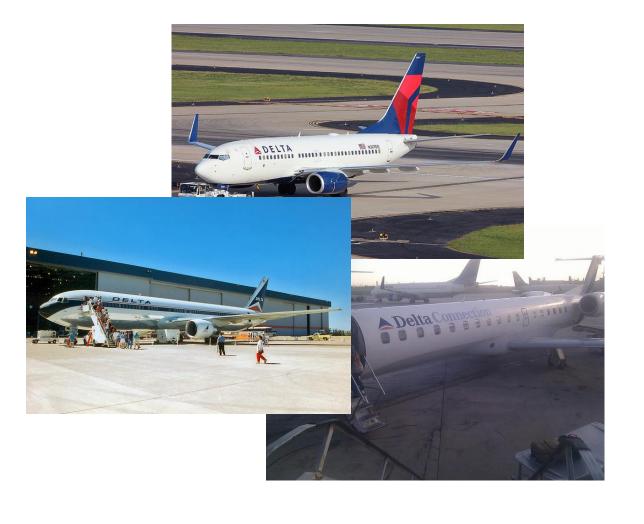


[Jacquez and Greiling 2003]

The man at bat readies to swing at the pitch while the umpire looks on.

wok	315.595
hummingbird	291.804
vane	290.037
racer	269.043
grizzly	229.274
equestrian	219.894
taxiing	205.410
unripe	201.733
siamese	199.024
delta	195.618
kiteboarding	192.459
airways	183.971
compartments	182.015
burners	180.553
stocked	177.472
spire	177.396
tulips	173.850
ben	171.936

wok	315.595
hummingbird	291.804
vane	290.037
racer	269.043
grizzly	229.274
equestrian	219.894
taxiing	205.410
unripe	201.733
siamese	199.024
<u>delta</u>	<u>195.618</u>
<u>delta</u> kiteboarding	195.618 192.459
<u></u>	
kiteboarding	192.459
kiteboarding airways	192.459 183.971
kiteboarding airways compartments	192.459 183.971 182.015
kiteboarding airways compartments burners	192.459 183.971 182.015 180.553
kiteboarding airways compartments burners stocked	192.459 183.971 182.015 180.553 177.472

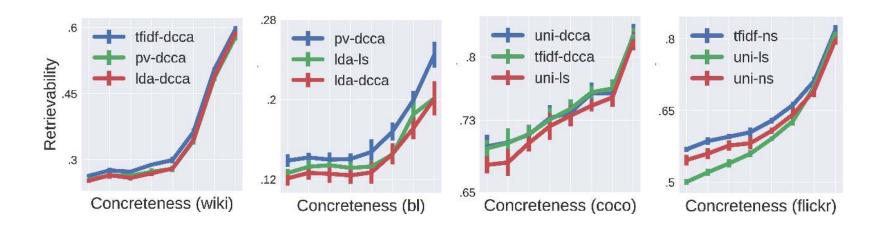


wok	315.595
hummingbird	291.804
vane	290.037
racer	269.043
grizzly	229.274
equestrian	219.894
taxiing	205.410
<u>unripe</u>	<u>201.733</u>
siamese	199.024
delta	195.618
kiteboarding	192.459
airways	183.971
compartments	182.015
burners	180.553
stocked	177.472
spire	177.396
tulips	173.850
ben	171.936

wok	315.595
hummingbird	291.804
vane	290.037
racer	269.043
grizzly	229.274
equestrian	219.894
taxiing	205.410
unripe	201.733
siamese	199.024
delta	195.618
kiteboarding	192.459
airways	183.971
compartments	182.015
burners	180.553
stocked	177.472
spire	177.396
tulips	173.850
ben	171.936

Most concrete Somewhat conc		t concrete	e Not concrete		
wok	315.595	motorcycle	10.291	side	1.770
hummingbird	291.804	fun	10.267	while	1.752
vane	290.037	including	10.262	other	1.745
racer	269.043	lays	10.232	sits	1.741
grizzly	229.274	fish	10.184	for	1.730
equestrian	219.894	goes	10.161	behind	1.709
taxiing	205.410	blurry	10.147	his	1.638
unripe	201.733	helmet	10.137	as	1.637
siamese	199.024	itself	10.128	image	1.620
delta	195.618	umbrellas	10.108	holding	1.619
kiteboarding	192.459	teddy	10.060	this	1.602
airways	183.971	bar	10.055	picture	1.589
compartments	182.015	fancy	10.053	couple	1.585
burners	180.553	sticks	10.050	from	1.569
stocked	177.472	himself	10.038	large	1.568
spire	177.396	take	10.016	person	1.561
tulips	173.850	steps	10.014	looking	1.502
ben	171.936	attempting	9.986	out	1.494

More concrete = easier to learn



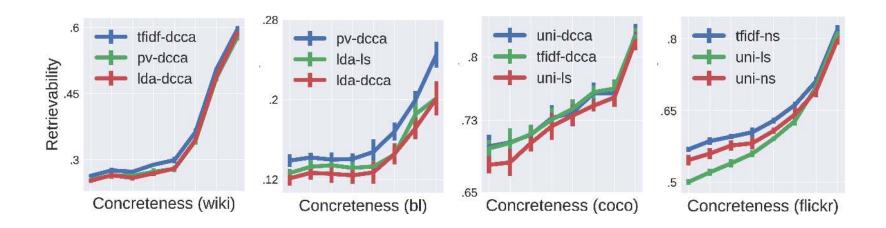
Bad news: success of retrieval objective largely determined by original feature geometry

Context matters!

"London"
Top 1% Concrete
as a caption descriptor in
MSCOCO.

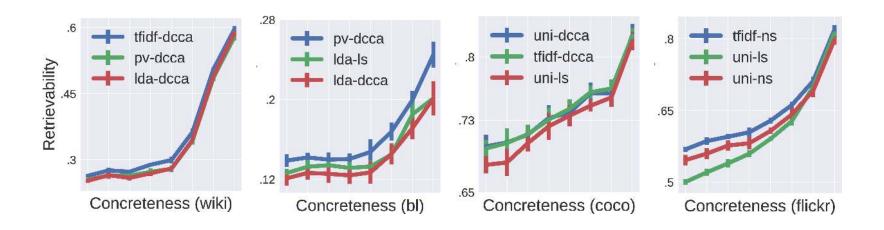
"#London"
Rank 1110/7K Concreteness
as a hashtag in a Flickr image
tagging dataset.

More concrete = easier to learn



Bad news: success of retrieval objective largely determined by original feature geometry

More concrete = easier to learn



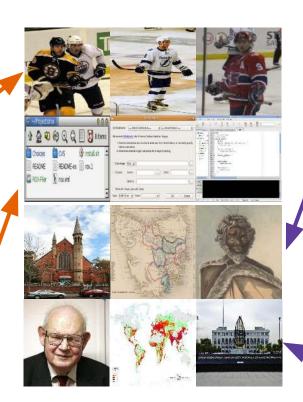
Bad news: success of retrieval objective largely determined by original feature geometry

Open question: what are the limits of retrieval-style algorithms at scale?

Experiments on Wikipedia with LDA topics:

Most Concrete

<u>170.2</u>	hockey 🗸
148.9	tennis
86.3	nintendo
81.9	guns
80.9	baseball
76.7	wrestling1
71.4	wrestling2
<u>70.4</u>	<u>software</u>
60.9	auto racing
58.8	currency



Least Concrete

<u>australia</u>	<u>1.95</u>
/ mexico	1.81
police	1.73
law	1.71
male names	1.65
community	1.58
history	1.52
time	1.47
months	1.43
linguistics	<u>1.29</u>

Use Case of Our Algorithm from Shi et al. 2019

(ACL Best Paper Nom.)

Idea: unsupervised constituency parsing based on the concreteness of spans in image captions

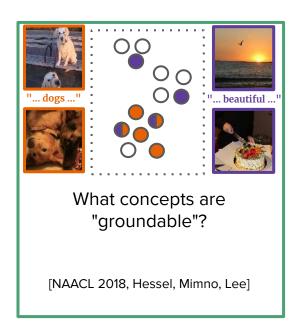
A cat is on the ground.

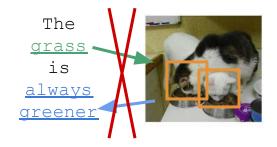
A cat stands under an umbrella.

A dog sits under an umbrella.

Model	NP	VP	PP	ADJP	Avg. F_1	Self F ₁
Random	$47.3_{\pm 0.3}$	$10.5_{\pm 0.4}$	$17.3_{\pm 0.7}$	$33.5_{\pm 0.8}$	$27.1_{\pm 0.2}$	32.4
Left	51.4	1.8	0.2	16.0	23.3	N/A
Right	32.2	23.4	18.7	14.4	22.9	N/A
VG-NSL (ours) [†]	79.6 ±0.4	$26.2_{\pm 0.4}$	$42.0_{\pm 0.6}$	$22.0_{\pm 0.4}$	$50.4_{\pm 0.3}$	87.1
VG-NSL+HI (ours)†	$74.6_{\pm 0.5}$	$32.5_{\pm 1.5}$	66.5 $_{\pm 1.2}$	$21.7_{\pm 1.1}$	$53.3_{\pm 0.2}$	90.2
VG-NSL+HI+FastText (ours)*†	$78.8_{\pm0.5}$	$24.4_{\pm 0.9}$	$65.6_{\pm1.1}$	$22.0_{\pm0.7}$	$\textbf{54.4}_{\pm0.4}$	89.8
Hessel et al. (2018)+HI [†]	72.5	34.4	65.8	26.2	52.9	N/A

(many more baselines in their paper)



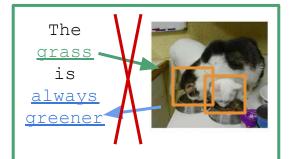


Does my model learn cross-modal interactions?

[In Sub to EMNLP 2020: Hessel, Lee; WWW 2017, Hessel, Lee, Mimno]

What concepts are "groundable"?

[NAACL 2018, Hessel, Mimno, Lee]



Does my model learn cross-modal interactions?

[In Sub to EMNLP 2020: Hessel, Lee; WWW 2017, Hessel, Lee, Mimno]

Image-text relationships on the web

Q: "How does an illustration relate to the text with which it is associated, or, what are the functions of illustration?"

A Functions expressing little relation to the text	B Functions expressing close relation to the text	C Functions that go beyond the text	
A1 Decorate A1.1 Change pace A1.2 Match style A2 Elicit emotion A2.1 Alienate A2.2 Express poetically A3 Control A3.1 Engage A3.2 Motivate	B1 Reiterate B1.1 Concretize B1.1.1 Sample B1.1.1.1 Author/Source B1.2 Humanize B1.3 Common referent B1.4 Describe B1.5 Graph B1.6 Exemplify B1.7 Translate B2 Organize B2.1 Isolate B2.2 Contain B2.3 Locate B2.4 Induce perspective B3 Relate B3.1 Compare B3.2 Contrast B3.3 Parallel B4 Condense B4.1 Concentrate B4.2 Compact B5 Explain B5.1 Define B5.2 Complement	C1 Interpret C1.1 Emphasize C1.2 Document C2 Develop C2.1 Compare C2.2 Contrast C3 Transform C3.1 Alternate progress C3.2 Model C3.2.1 Model cognitive process C3.2.2 Model physical process C3.3 Inspire	Table I Taxonomy of function of images to the te-

A: It depends!

[Marsh and Domas White, 2003]

Increasing number of multimodal, in-vivo studies

Proposing work	Task (structure)	Abbv.	# image+text
Kruk et al. (2019)	Instagram		
	intent (7-way clf)	I-INT	1299
	→ semiotic (7-way clf)	I-SEM	1299
		I-CTX	1299
Vempala and Preoţiuc-Pietro (2019)	Twitter visual-ness (4-way clf)	T-VIS	4471
Hessel et al. (2017)	Reddit popularity (Pairwise-ranking)	R-POP	88K
Borth et al. (2013)	Twitter sentiment (binary clf)	T-ST1	603
Niu et al. (2016)	Twitter sentiment (binary clf)	T-ST2	4511

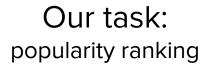
Increasing number of multimodal, in-vivo studies

Proposing work	Task (structure)	Abbv.	# image+text
Kruk et al. (2019)	Instagram		
	intent (7-way clf)	I-INT	1299
	semiotic (7-way clf)	I-SEM	1299
		I-CTX	1299
Vempala and Preoţiuc-Pietro (2019)	Twitter visual-ness (4-way clf)	T-VIS	4471
Hessel et al. (2017)	Reddit popularity (Pairwise-ranking)	R-POP	88K
Borth et al. (2013)	Twitter sentiment (binary clf)	T-ST1	603
Niu et al. (2016)	Twitter sentiment (binary clf)	T-ST2	4511

"Tonight, I carved a pumpkin. I also doused it in lighter fluid and lit it on fire." - /r/pics

"Snacks!" - /r/aww

	# Users	#/% Imgur	Cap Len
pics	2108K	2472K/70%	9.84
aww	1010K	954K/81%	9.13
cats	109K	100K/73%	8.97
MakeupAddiction (MA)	77K	58K/57%	13.67
FoodPorn (FP)	74K	50K/77%	9.39
RedditLaqueristas (RL)	27K	39K/73%	11.12



"You have to go to the border for food Fish Tacos [San Diego]" -/r/FoodPorn

"Glamor Leaves" - /r/RedditLaquersitas

The grass is always greener

This is why you get two cats

The grass is always greener

This is why you get two cats

The grass is always greener

This is why you get two cats

	aww	pics	cats	MA	FP	RL
Humans	60.0	63.6	59.6	62.2	72.7	67.2

The grass is always greener

Visual-textual interactions: "meaning multiplication"

The idea is that, under the right conditions, the value of a combination of different modes of meaning can be worth more than the information (whatever that might be) that we get from the modes when used alone.

In other words, text "multiplied by" images is more than text simply occurring with or alongside images.

--- Bateman, 2014 describing "Meaning Multiplication" [Barthes 1988; Jones 1979]

Prediction Results

Best unimodal (image only)

	aww	pics	cats	MA	FP	RL
ResNet50	64.8	60.0	62.6	64.9	65.2	64.2
Text + Image	<u>67.1</u>	<u>62.7</u>	<u>65.9</u>	<u>67.7</u>	65.8	66.4

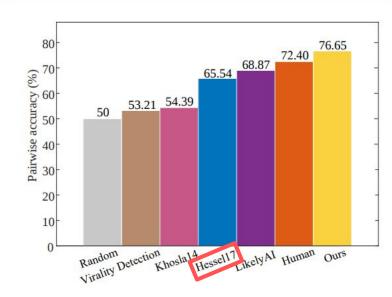
Multimodal beats unimodal!

Prediction Results

Best unimodal (image only)

	aww	pics	cats	MA	FP	RL
ResNet50	64.8	60.0	62.6	64.9	65.2	64.2
Text + Image	<u>67.1</u>	<u>62.7</u>	<u>65.9</u>	<u>67.7</u>	65.8	66.4

Multimodal beats unimodal!

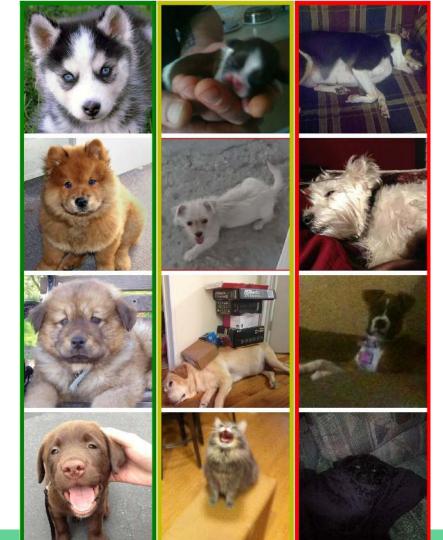


[Ding et al. 2019's instagram results]

Highest Scores

Lowest Scores

Highest Scores



Lowest Scores

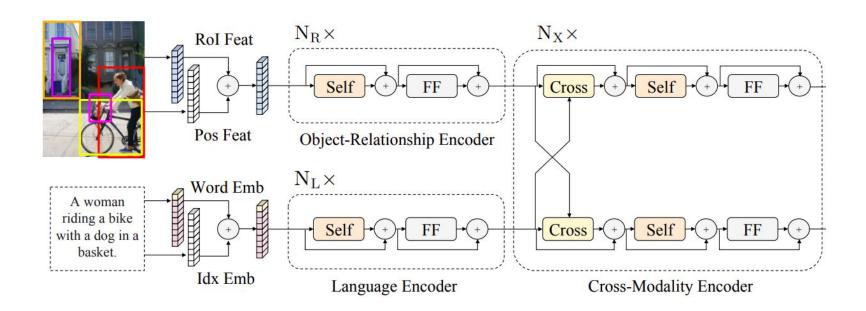
What is visual-textual grounding?

A collection of tasks *requiring connection* between visual and textual content.

In other words, text "multiplied by" images is more than text simply occurring with or alongside images.

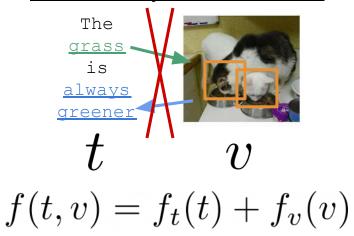
--- Bateman, 2014 describing "Meaning Multiplication" [Barthes 1988; Jones 1979]

It can be difficult to tell what models learn...

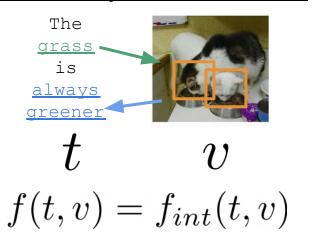


Can we formalize this a bit?

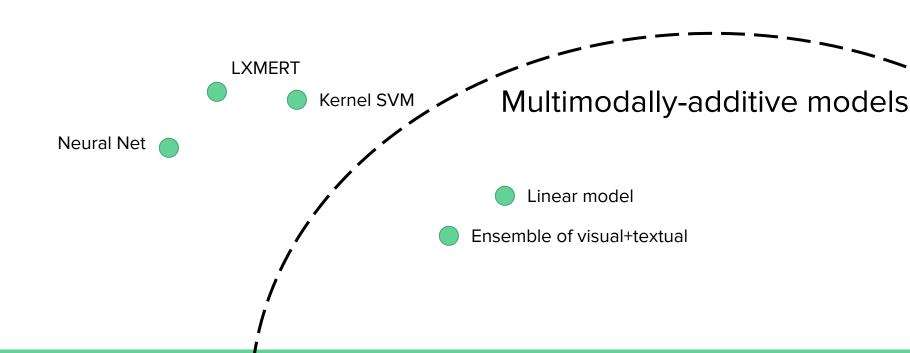
Multimodally additive model



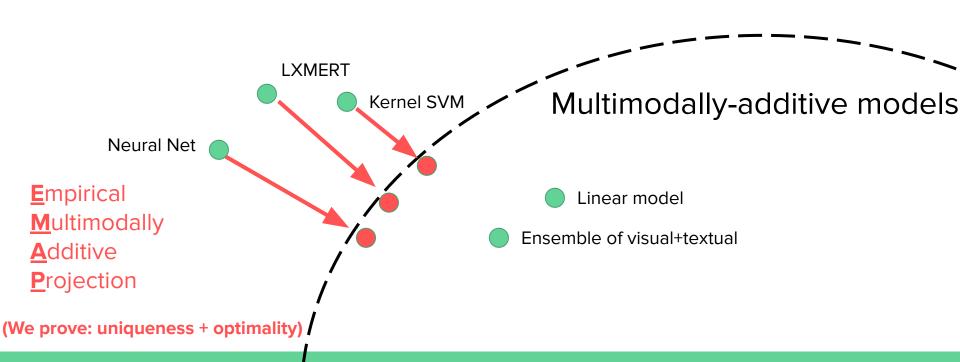
Multimodally interactive model



Simplifying models with function projection



Simplifying models with function projection



Kruk et al. (2019)	Instagram		
	intent (7-way clf)	I-INT	1299
		I-SEM	1299
		I-CTX	1299
Vempala and Preoţiuc-Pietro (2019)	Twitter visual-ness (4-way clf)	T-VIS	4471
Hessel et al. (2017)	Reddit popularity (Pairwise-ranking)	R-POP	88K
Borth et al. (2013)	Twitter sentiment (binary clf)	T-ST1	603

Twitter sentiment (binary clf)

Task (structure)

image+text

Abbv.

T-ST2

4511

Proposing work

Niu et al. (2016)

Metric	AUC	AUC	AUC	Weighted F1	ACC	AUC	ACC
Setup	5-fold	5-fold	5-fold	10-fold	15-fold	5-fold	5-fold
Prev. SoTA	85.3	69.1	78.8	44	62.7	N/A	70.5

I-INT I-SEM I-CTX T-VIS R-POP T-ST1 T-ST2

Metric	AUC	AUC	AUC	Weighted F1	ACC	AUC	ACC
Setup	5-fold	5-fold	5-fold	10-fold	15-fold	5-fold	5-fold
Prev. SoTA	85.3	69.1	78.8	44	62.7	N/A	70.5
Linear Model (A)	90.4	72.8	80.9	51.3	63.7	75.6	76.1

T-VIS

T-ST1

T-ST2

R-POP

I-INT I-SEM I-CTX

Metric	AUC	AUC	AUC	Weighted F1	ACC	AUC	ACC
Setup	5-fold	5-fold	5-fold	10-fold	15-fold	5-fold	5-fold
Prev. SoTA	85.3	69.1	78.8	44	62.7	N/A	70.5
Linear Model (A)	90.4	72.8	80.9	51.3	63.7	75.6	76.1

81.5

T-VIS

53.4

R-POP

T-ST1

75.5

T-ST2

80.9

I-INT I-SEM I-CTX

74.4

Our Best Interactive (I) 91.3

Metric	AUC	AUC	AUC	Weighted F1	ACC	AUC	ACC	
Setup	5-fold	5-fold	5-fold	10-fold	15-fold	5-fold	5-fold	
Prev. SoTA	85.3	69.1	78.8	44	62.7	N/A	70.5	
Linear Model (A)	90.4	72.8	80.9	51.3	63.7	75.6	76.1	

81.5

81.3

T-VIS

53.4

51.0

R-POP

64.2*

64.1*

T-ST1

75.5

75.9

T-ST2

80.9

80.7

I-SEM I-CTX

74.4

74.2

I-INT

91.3

91.1

Our Best Interactive (I)

 \downarrow + EMAP (A)

Well-balanced VQA datasets don't have this property

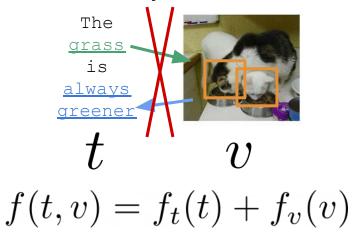
	LXMERT	+EMAP	Const.
VQA2	70.3	40.5	23.4
GQA	60.3	41.0	18.1

Accuracy results on dev set for LXMERT, projected LXMERT, and constant prediction

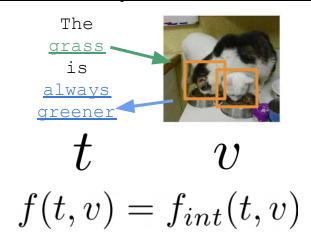
Takeaway:

report the multimodally-additive projection performance!

Multimodally additive model

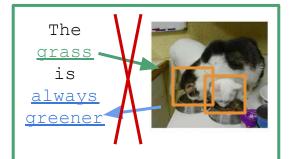


<u>Multimodally interactive model</u>



What concepts are "groundable"?

[NAACL 2018, Hessel, Mimno, Lee]



Does my model learn cross-modal interactions?

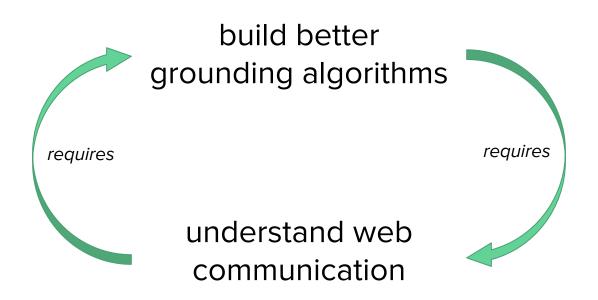
[In Sub to EMNLP 2020: Hessel, Lee; WWW 2017, Hessel, Lee, Mimno]

We can <u>do cool things</u> with multimodal webdata,

but web texts are <u>not literal image descriptions</u>

(even though most algorithms treat them that way)

My Research Goals:



Thanks to my awesome collaborators!

Lillian Lee

David Mimno

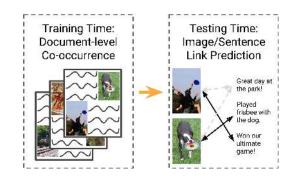
Bo Pang

Zhenhai Zhu

Radu Soricut

And thanks to you!!

The Promise and the PERILS



Contact: jmhessel@gmail.com @jmhessel on Twitter

Code, data, and papers are all available:

http://www.cs.cornell.edu/~jhessel/

Work on identifying hard/easy-to-ground concepts:

[Lu et al., 2008; Berg et al., 2010; Parikh and Grauman, 2011; Yatskar et al. 2013; Young et al., 2014; Kiela and Bottou, 2014; Jas and Parikh, 2015; Lazaridou et al., 2015; Silberer et al., 2016; Lu et al., 2017; Bhaskar et al., 2017; Mahajan et al., 2018; inter alia]

Our contributions:

- Fast algorithm for computing concreteness
- Extension from unigrams/bigrams to LDA topics
- Demonstration that concreteness is context specific

The empirical projection

Compute output for all image/text pairs, even mismatched ones not appearing in the data.

Return predictions with only additive structure that are minimally distant (according to squared error) from original predictions.

Algorithm 1 Multimodally-Additive Projection

Input: a trained model f that outputs logits; a set of text/visual pairs $\{(t_i, v_i)\}_{i=1}^N$

Output: the predictions of \hat{f} , the empirical \mathcal{L}^2 projection of f onto the set of multimodally-additive functions, on the input points.

$$f_{cache} = \{\}, preds = \{\}$$
 for $i, j \in \{1, 2, \dots, N\} \times \{1, 2, \dots, N\}$ do
$$f_{cache}(i, j) = f(t_i, v_j)$$
 end for
$$m = mean(f_{cache})$$
 for $i \in \{1, 2, \dots, N\}$ do
$$proj_t = \frac{1}{N} \sum_{j=1}^{N} f_{cache}(i, j)$$

$$proj_v = \frac{1}{N} \sum_{j=1}^{N} f_{cache}(j, i)$$

$$preds[i] = proj_t + proj_v - m$$
 end for return $preds$

(We prove: uniqueness + optimality)