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What is a
"multi-image, multi-sentence document"?

Image captioning/tagging case
single image,
explicit multimodal link by construction

Our case

Multiple images, multiple sentences,
no explicit multimodal links

Web documents look less like
this and more like this!

Multi-image, multi-sentence document use-cases:

1) provide context-specific image captions for low-vision and blind users
2) train image+text models directly from unstructured web documents

The Task: Unsupervised Link Prediction

Training Time:
Document-level

Co-occurrence

Testing Time:
Image/Sentence
Link Prediction

Great day at
the park!

Played frisbee
with the dog.

Won our
ultimate
game!

Datasets

Crowd-labeled Datasets:

Designed to address basic questions about this task

| A run down street with grass growing in the middle it. A person's hand holdingup a :
i cell phone to a guinea pig in a cage. A man in a party hat sits at a table talkingon a |
i cell phone. A person doing a high jump on a skateboard. A keyboard sittingona !
| desk next to a large mouse pad. A man standing outside a building and practicing
tennis. A person helping another person fix their skis. A photograph of sewing

The horses are small and in the pen. Two ponies are in a dirt covered
. field near a wire fence. Brown animals are standing up next to each
»  other. Two horses are grazing on green grass outside. A brown horse
' with messy fur is staring at the camera. '

________________________________________________________________________________________

Q: What if images/sentences
are similar within a document?
A: Descriptions-in-Isolation [2]

supplies including: scissors, a tape measure. Buttons and a needle & thread. A
i large white and blue bus driving down a street. Some people walking on the sand !
| water and a kite surfer. '

_______________________________________________________________________________________

Q: Is this task even possible?
A: Microsoft COCO [1] "Documents"

[male] and [male] went to a fair on friday. There were lot of people there
. inthe field. A big roller coaster was set up in the middle of the fair.

. There were also other ride to play on. Thankfully the last ride was the
| scariest ride that i refused to go on, was the one that went straight up
| and dropped down quickly. i

_______________________________________________________________________________________

Q: What if sentences are cohesive?
A: Stories-in-Sequence [2]

Q: What if many sentences do not refer to any image?
A: DII-Stress, a version of DIl with 45 distractor sentences

Web-scraped Datasets:
Harder, more realistic cases

, Ingredients Mint Layer 1. 1 sticks butter 2. 1 cup

. powdered sugar 3. 1 table spoon milk ... *** Chocolate !

\ Layer #1 Although the chocolate layers are perhaps the !

. simplest... *** Finishing First Layer 1. Pour evenly into

| apan... *** Onto the Mint! The Mint mixture can be

| changed ... Second Layer Is Finished! ...The ,

i possibilities are endless :D *** Repeat Step #2 ... and
final layer of your beautiful snack. *** Pulling It All

Together! 1. Remove the dually layered bar ...

_____________________________________________________________________

RecipeQA [3]

9K documents, 88K images
6 sentences/8 images per doc

\ So my partner and | decided that we want to build our
| first In-Home rock climbing wall... *** We set asidea !
. budget of $1200 and began a model to estimate... ***
| Each box represents one square foot of climbing .
space... *** After cutting a bit more plywood and lining
. itup... *** | insisted in putting a few cross braces into
. the angled section... *** I'm going to have fun with this. :

_____________________________________________________________________

"Do it Yourself"

9K documents, 154K images
15 sentences/16 images per doc

i Rivet Arivet is a permanent mechanical fastener...
. Solid rivets consist simply of a shaft and head... Steel !
' rivets can be found in static structures such as bridges, '
i cranes, ... They are offered from 1/16-inch (1.6 mm) to
3/8-inch (9.5 mm) in diameter ... The most common
machine is the impact riveter and the most common
use of semitubular rivets is in lighting, brakes ...

Wikipedia [4]

16K documents, 92K images
86 sentences/5 images per doc
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Our best-performing algorithm

CNNs and RNNs to extract features +
solve bipartite assignment in the forward pass

" 1took the kids down |

to the river on this |
fine spring day. \

N 574
SR\

maximize E xi; M;;
]
s.t. Vi, Z:I}ij < 1;Vy, ZJ,U < 1;¥i,j,2i; € {0, 1}.
J [
to each image, no more than one sentence
to each sentence, no more than one image

. The river has always |
fascinated me. It's /

' not a huge river, but |

. [male] had his |
. adorable hat on, and |
. | loved watching him !
. watch the water |

He found a rock he
liked, and asked to
take it home.

[male] pointed at

everything he saw, |

and | loved his |
enthusiasm.
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Training: maximize similarity between true (images, sentences), while
minimizing similarity between negatively sampled (images, sentences)

Some baselines + quantitative results

Baseline 1: Object detection + word2vec

Baseline 2: NoStruct, a version of our algorithm with no structure

MSCOCO Story-DII Story-SIS DII-Stress RQA DIY
AUC p@1/p@5 AuC p@1/p@5 AUC p@1/p@5 AUC p@1/p@5 AuC p@1/p@5 AuC p@1/p@5

Random 49.7 5.0/4.6 49.4 19.5/19.2 50.0 19.4/19.7 50.0 2.0/2.0 494 17.8/16.7 49.8 6.3/6.8

Obj Detect 89.5 67.7/45.9 65.3 50.2/35.2 58.4 40.8/28.6 76.9 25.7/17.5 58.7 25.1/21.5 53.4 17.9/11.8
NoStruct 87.5 50.6/34.6 76.6 60.1/46.2 64.9 43.2/33.7 84.2 21.4/15.6 60.5 33.8/27.0 57.0 13.3/11.8
Proposed  98.7 91.0/78.0 82.6 70.5/55.0 68.5 50.5/38.3 95.3 65.5/45.7 69.3 47.3/37.3 61.8 22.5/17.2

(higher = better)
Other variants/ablations are examined in the paper

Example Same-document Predictions

(Green is a ground-truth edge, purple is not)
Microsoft COCO

Stories-in-Sequence
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A woman A kitchen with A young a field that A woman | work at a The store My bossis | don't have ..this tends
with a tennis  two metal man writing has a few  preparing to grocery even carries greatand towastemy to bethe
racket with a sinks next to a on the door baseball serve a ball store, some my favorite  makes me time making isle | visit for
green stove top of a players onit thrown high may think brand of laugh. extra trips a nice
background. oven. refrigerator in the air. it's lame... soup... after work...  relaxing...

Wikipedia
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This Theisland is First sighted ... population  Mauritian ‘ — >
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was formed in for its natural around 1600 Brahminsin is spoken by : =
a series of beauty. on Mauritius, Mauritius who 90 per cent of
undersea the dodo  have made a the Pourthe First,fryupa ..Imadea ... your This one is
volcanic became mark for  population, is quart of pound of  triple batch "meat" strip  just syrup
eruptions 8-10 extinct less themselves in considered to halt-and-half your favorite for in the and smoke.
million years than eighty different  be the native into the thin-sliced competition, center of Combine 1
ago... years later. fields. tongue... blender. bacon. this recipe... the bacon... cup bacon...

What makes a document easier or harder?

Spread Hypothesis:

Content Hypothesis:
Some concepts are harder for image+text
models to learn.

Documents with similar sentences/images
will be harder to predict at test-time.

cat

For crowd-labeled datasets, both the spread and content hypothesis
explain document difficulty!

Data and Code Available!




