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Using Text Data in the Digital Humanities

[Underwood et al. 2013]



There exist lots of text tools for Digital Humanists
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[Hamilton et al. 2016]
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Levels of abstraction in computer vision

Raw pixels Concepts Higher level 
"understanding"
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Previous Work with Images in DH

Langmead et al. 2017. Wevers and Lonij, 2017.
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● Why should we want to model text and images jointly?

● Computer vision and "why digital libraries?"

● The dataset/experiments
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A few caveats:

This is an exploratory, pilot study with  

aspirations on the machine learning side.

Can computer vision tools be applied here at all?

Does multimodal learning make sense to apply here?

Is the issue of compounding noise insurmountable?

Can organize images/text in an unsupervised fashion?



● Similarities between text data and image data

● Why should we want to model text and images jointly?

● Computer vision and "why digital libraries?"

● The dataset/experiments

● Are concrete things easier to learn?



A brief aside into computer vision...
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I am 99.6% sure this is a 
photo of a cat.





Object detection
=/=

image understanding



[Karpathy 2012]
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[Karpathy 2012]

I am 86.6% sure this 
photo has a person in it.











How can we expect a computer vision algorithm to 
learn without fuller context?





[Smith 1945. "Country Doctor." Subject: Dr. Ernest Ceriani]



[Smith 1945. "Country Doctor." Subject: Dr. Ernest Ceriani;
Annotation from Time 100 Most Influential Photographs]

Although lauded for his war photography, W. Eugene Smith left his 
most enduring mark with a series of midcentury photo essays for LIFE 
magazine. The Wichita, Kans.–born photographer spent weeks 
immersing himself in his subjects’ lives, from a South Carolina nurse- 
midwife to the residents of a Spanish village. His aim was to see the 
world from the perspective of his subjects—and to compel viewers to 
do the same. “I do not seek to possess my subject but rather to give 
myself to it,” he said of his approach. Nowhere was this clearer than in 
his landmark photo essay “Country Doctor.” Smith spent 23 days with 
Dr. Ernest Ceriani in and around Kremmling, Colo., trailing the hardy 
physician through the ranching community of 2,000 souls beneath the 
Rocky Mountains. He watched him tend to infants, deliver injections in 
the backseats of cars, develop his own x-rays, treat a man with a heart 
attack and then phone a priest to give last rites. By digging so deeply 
into his assignment, Smith created a singular, starkly intimate glimpse 
into the life of a remarkable man. It became not only the most 
influential photo essay in history but the aspirational template for the 
form.
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Although lauded for his war photography, ...

1. Address interesting digital humanities questions

2. Contains images associated with text

3. Contains lots of image/text pairs (preferably 100K+)











Evidence to support 
arguments in the 
digital humanities, 
and new questions.OCR

















Can this surrounding text provide adequate context
for visual understanding?
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● Similarities between text data and image data

● Why should we want to model text and images jointly?

● Computer vision and "why digital libraries?"

● The dataset/experiments

● Are concrete things easier to learn?



British Library Dataset

- Released by British Library to the public domain

- 49,455 digitised books (65,227 volumes) largely from the 19th 
Century

- 405K images associated with text in +/-3 pages with a mean of 
2.3K tokens. We use only use books that are in english



Example "medium" images



Example "plate" images
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dimensions
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Text models

Natural Language 
Processing

Clustering Methods

● Latent Dirichlet Allocation (LDA)
● Paragraph Vector (PV)
● Bi-term Topic Model (BTM)

[Blei et al. 2003; Yan et al. 2013; Le and Mikolov 2014]

Base Methods

● unigram vectors (uni)
● tfidf vectors (tfidf)
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Does it work?
Some good examples



11.6% iron furnace acid gas fig process copper air heat fire
7.6% made end side long iron wood hand work round cut 
4.0% gold ore mill water stamp solution battery silver tailings ores 
3.7% steam fig cylinder engine shaft water pressure pump valve inch
3.5% great time present part form generally large found number small



Predicted:
11.6% iron furnace acid gas fig process copper air heat fire
7.6% made end side long iron wood hand work round cut 
4.0% gold ore mill water stamp solution battery silver tailings ores 
3.7% steam fig cylinder engine shaft water pressure pump valve inch
3.5% great time present part form generally large found number small

True:
49.1% iron furnace acid gas fig process copper air heat fire
12.2% made end side long iron wood hand work round cut
11.5% gold ore mill water stamp solution battery silver tailings ores
7.6% made point line plan case general found work position time
4.0% steam fig cylinder engine shaft water pressure pump valve inch



Predicted:
11.1% london street author printed vol edition illustrations john volumes reserved 
5.2% history work published book author edition account present volume historical 
3.7% life men man great good character day world fact nature 
3.7% time made work make great means place found con purpose 
3.3% poet poems works poem poetry poets english edited poetical life 

True:
21.3% london street author printed vol edition illustrations john volumes reserved 
12.5% history work published book author edition account present volume historical 
12.5% john esq william sir thomas george james rev robert henry 
7.1% time made work make great means place found con purpose 
6.8% found stone stones remains bones ancient discovered age roman relics 



Predicted:
5.2% view beautiful scenery place picturesque fine village town situated beauty 
4.5% rock rocks mountain feet wild scene deep water waters mountains 
3.9% thy eye nature till ring mind oft vain tis pride 
3.7% london street author printed vol edition illustrations john volumes reserved 
3.7% ofthe part con account tion country pro present general state 

True:
25.6% view beautiful scenery place picturesque fine village town situated beauty 
10.7% rock rocks mountain feet wild scene deep water waters mountains 
7.1% trees village green hill country long wood hills road forest 
5.7% great time present part form generally large found number small 
5.2% ofthe part con account tion country pro present general state



Does it work?
Some not-so-good examples



Predicted:
4.8% church south nave north tower window side windows chancel east 
3.4% sweet love song day summer flowers heart fair bright green 
3.3% building marble great columns palace front beautiful architecture feet centre 
2.8% london street author printed vol edition illustrations john volumes reserved 
2.6% church rev chapel minister congregation pastor sunday meeting worship school

True:
37.8% history work published book author edition account present volume historical 
12.1% london street house lane westminster square great inn paul thames 
9.3% time made work make great means place found con purpose 
7.1% oxford court windsor hampton thames college richmond queen house surrey 
6.2% great time present part form generally large found number small 



Predicted:
2.4% life men man great good character day world fact nature 
2.3% thy eye nature till ring mind oft vain tis pride 
2.2% time made work make great means place found con purpose 
2.2% rocks beds limestone strata sandstone clay rock geological geology formation 
2.1% rock rocks mountain feet wild scene deep water waters mountains 

True:
38.9% water sand waters feet spring stream springs great surface salt 
11.2% rocks beds limestone strata sandstone clay rock geological geology formation 
7.9% iron furnace acid gas fig process copper air heat fire 
7.3% great time present part form generally large found number small 
6.7% cave rock caves cavern entrance caverns roof grotto floor rocks 



Predicted:
5.2% view beautiful scenery place picturesque fine village town situated beauty 
2.8% rock rocks mountain feet wild scene deep water waters mountains 
2.1% time made work make great means place found con purpose 
2.1% great time present part form generally large found number small 
2.0% life men man great good character day world fact nature 

True:
30.0% york hull yorkshire ripon bolton abbey scarborough hall north leeds 
9.7% valley mountain mountains hills miles feet range road plain great 
6.6% view beautiful scenery place picturesque fine village town situated beauty 
2.8% town city houses inhabitants miles place streets towns built large 
2.8% power state conduct act manner death fate mind length evil 









beach sun warm 2017 islandday 
vacation motivationmonday
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● Similarities between text data and image data

● Why should we want to model text and images jointly?

● Computer vision and why digital libraries

● The dataset/experiments

● Are concrete things easier to learn?
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[multi-modal approaches] over 
language-only models have been clearly 
established when models are required to 
learn concrete noun concepts."

- Hill and Korhonen 2014



Easy to learn concept vs hard to learn concept?

"Performance advantages of 
[multi-modal approaches] over 
language-only models have been clearly 
established when models are required to 
learn concrete noun concepts."

- Hill and Korhonen 2014



The cat is in the grass.

This cat is enjoying the sun.



The cat is in the grass.

This cat is enjoying the sun.

This is a beautiful baby.

The sunset is beautiful.
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Image Feature Space

Conv Net

CatBeautiful

Idea: Measure the "Clusteredness" Of Concepts
Cat is more concrete than beautiful
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COCO Results
Most concrete

         wok     315.595
 hummingbird     291.804
        vane     290.037
       racer     269.043
     grizzly     229.274
  equestrian     219.894
     taxiing     205.410
      unripe     201.733
     siamese     199.024
       delta     195.618
kiteboarding     192.459
     airways     183.971
compartments     182.015
     burners     180.553
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  motorcycle      10.291
         fun      10.267
   including      10.262
        lays      10.232
        fish      10.184
        goes      10.161
      blurry      10.147
      helmet      10.137
      itself      10.128
   umbrellas      10.108
       teddy      10.060
         bar      10.055
       fancy      10.053
      sticks      10.050
     himself      10.038
        take      10.016
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  attempting       9.986

        side       1.770
       while       1.752
       other       1.745
        sits       1.741
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      behind       1.709
         his       1.638
          as       1.637
       image       1.620
     holding       1.619
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     looking       1.502
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area attack safety members 
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Disclaimer: in the paper we have...

... correlations with human judgements

... confirmations that concreteness is not simply 
measuring frequency

... fuller definitions of how concreteness
is computed

... additional experiments using a second
image model
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What about the British Library Set?

... harder to interpret; quite correlated with
volume occurrence structure
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Are concrete concepts more learnable?



● Similarities between text data and image data

● Why should we want to model text and images jointly?

● Computer vision and why digital libraries

● The dataset/experiments

● Are concrete things easier to learn?
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Three takeaways:

1. Computer vision and large image sets
are increasingly available for digital humanists.

2. Multimodal modeling can be advantageous,
and enable new types of search.

3. Some concepts are less concrete than others,
and those are generally more difficult to learn.

NASA

NASA

NASA

Cat

Beautiful


