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The caption generation problem...
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Neural Image Caption (Vinyal's et. al. 2014)
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street forests were incorporated by the
15th century BE...
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» Higher Quality Representations
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Plausible outcomes....
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Directly learned: Flickr8k [Hodosh et al. 2013]
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_ "Malaysian Spicy
Noodles”

66K Image/recipe pairs, courtesy Yummly.com
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Is this really a new language task?
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Convolutional Neural Network



13




14

Data from [Bossard et al. 2014]

101K Labeled Food Images in 101 Classes
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Transfer learned: Yummly
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Implications

Mostly Coarse-Grained Information

2. generate

sentences |

3. re-rank
sentences

[Fang et al. 2014]
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Towards Fine-Grained Captioning
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Towards Fine-Grained Captioning
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Towards Fine-Grained Captioning
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A few more experiments in the paper...



19

A few more experiments in the paper...
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New domain advice: one caption per image?

More Captions | More Images

B-1** 55.167 54.243
B-2* 33.567 32.814
B-3 20.633 20.300
B-4 13.133 13.014
METEOR 13.105 13.096
CIDEr 21.428 20.418
CIDEr-D 16.350 15.550
Proportion o o
Unique** 14.8% 9.96%
Training : .
Perplexity** 14.69 16.01
yaneapon.  |.osigg 25.33

Perplexity*




AlexNet vs VGG-Net

AlexNet | VGG
Top-1 ImageNet 57 1% 75 6%
Val Acc
B-1 54.187 | 53.913
B-2 33967 | 33.527
B-3%* 20.640 | 20.007
B-4+** 12.833 12.213
METEOR 14.559 14.559
CIDEr 32416 | 31.362
CIDEr-D* 26.200 | 25.242
Proportion A 26 .
Unique™** 20.5% 17.0%
Traning
Perplexity*** 10.79 11.04
Validation
Perplexity*** 17.84 17.66




